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the unconstricted arc is approximately proportional to 
current while peak current densities are independent of 
current. Then, according to Eq. (3), the pressure avail­
able to produce streaming is proportional to (current), 
and according to Eq. (5) the velocities resulting will be 
then proportional to (current)l. Since the cross-sectional 
area is directly proportional to (current), this suggests 
that total flows should increase as (current)!. 

This simple picture is modified by the fact that as 
current increases in this range, temperatures also 
increase, so that velocity and heat flow should increase 
somewhat faster, while mass flow should increase slower 
than suggested by the foregoing. The data show this 
trend. 

In conclusion it can be said that the magnetically 
produced streaming in the high current arc plays an 
important role in the over-all behavior of the arc and 
makes a very considerable contribution to the heat and 
mass transfer of the arc. The mechanism for the heat 
transfer appears to be analogous to that observed in 
flames. 

I would like to thank H. N. Olsen and O. H. Nestor 
for supplying unpublished data for this work. 

SIMPLE ANALOG EXPERIMENT DEMONSTRATING 
ARC PUMPING 

A two-dimensional analog experiment was run. in 
mercury to demonstrate the pumping which occurs in a 
divergent current path. A flat dish was filled to a depth 
of t cm with mercury, and a small area electrode and 
large area electrode were connected to a generator to 
simulate the geometry existing in the arc (Fig. 6). With 
a current of 500 amp passing through the mercury, a 
vigorous streaming of mercury away from the small 
area electrode, with peak velocities of 5 cm/sec, was 
observed. A white powder on the surface shows the 
stream lines and velocities in a photograph exposed 
t sec. A card was placed on the surface of the mercury 
and iron filings sprinkled on the surface to show the 
magnetic field lines. This was photographed and the 
two pictures superimposed in printing. 
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It has been found in the theory of electron tubes that, according 
to the "small-amplitude power theorem," the fast and slow space­
charge waves carry positive and negative energy, respectively. 
Similar analysis of different systems leads to similar results, leading 
one to conjecture that there is some sense in which one might 
assert that, for a wide class of dynamical systems, slow waves 
carry negative energy. In a one-dimensional model, "slow" and 
"fast" waves in a moving propagating medium refer to waves of 
which the phase velocity does or does not change sign, respectively, 
on transforming from the moving frame to the stationary frame. 
Small-amplitude disturbances of any dynamical system may be 
described by a quadratic Lagrangian function, from which one may 
form the canonical stress-tensor, elements of which are quadratic 

1. INTRODUCTION 

ONE of the most illuminating and useful concepts 
in the theory of microwave tubes is the so-called 

"small-amplitude power theorem"1-3 which was first 
given, in a very restricted form, by L. J. Chu.4 It was 
found that, in simple cases, it is possible to ascribe to the 

* The research reported in this document was supported jointly 
by the U. S. Army Signal Corps, the U. S. Air Force, and the U. S. 
Navy (Office of Naval Research). 

1 W. H. Louisell and J. R. Pierce, Proc. I.R.E. 43, 425-427 
(1955). 

2 H. A. Haus, Noise in Electron Devices, edited by L. D. Smullin 
and H: A. Haus (John Wiley & Sons, Inc., New York, 1959), 
pp.77-153. 

3 P. A. Sturrock, Ann. Phys. 4, 306-324 (1958). 
4 L. J. Chu, paper presented at the Institute of Radio Engineers 

Electron Devices Conference, University of New Hampshire, June, 
1951. 

functions of the variables which appear in the linearized equations 
of motion. For any pure wave in this system, the energy density E 
and the momentum density P, as they appear in the canonical 
stress tensor, are related to the frequency wand wave number k by 
E=Jw, P=Jk, where 27r1 is the action density. The rules for 
Galilean transformation now show that the energy densities, as 
measured in the stationary frame, of fast and slow waves have 
positive and negative sign, respectively, if (as is usually the case) 
the energy densities of both waves are positive in the moving 
frame. Similar arguments explain the signs of the energy density 
of the two "synchronous" waves which arise in the analysis of 
transverse disturbances of an electron beam in a magnetic field. 

particles of a modulated electron beam a "kinetic 
power," the formula for which involves only terms 
which appear in the linearized equations for the system, 
and which, when added to the Poynting flux of the 
associated electromagnetic field, is properly conserved. 
In more complicated cases, interaction terms arise. 
Certain simple but acceptable models for electron 
beams make it possible to analyze an arbitrary dis­
turbance of a free beam into a "fast wave" and a "slow 
wave," the phase velocities of which are greater and less, 
respectively, than the particle velocity. The kinetic 
power of the fast wave is positive, that of the slow wave 
is negative; since the group velocities have the direction 
of the beam velocity, one must conclude that the corre­
sponding energy density of the fast wave is positive, 
whereas that of the slow wave is negative. 
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The small-amplitude power theorem has been the 
subject of some controversy which might be dispersed 
if it were generally agreed that the power which, in the 
framework of this theorem, is ascribed to the particle 
motion is not necessarily the correct or "physical" 
kinetic power of the beam, and that the usefulness of 
the theorem does not rest upon the equivalence of these 
two quantities. In solving the equations of motion, 
terms such as VI appear (where V is velocity) which are 
of first order in the amplitude, and also higher-order 
terms such as V2 which is of second order in the ampli­
tude. Terms such as V2 must normally be obtained by 
solving nonlinear forms of the equations. It is important 
to note that such nonlinear terms are not determined 
uniquely by the linear terms: one may either complete 
the specification in an arbitrary way or, as is appropriate 
in electron-tube problems, by examining the way in 
which the wave is set up. It follows at once that we can­
not expect to assert that the physical energy of a slow 
wave is negative, only that the energy of a slow wave 
generated in a specified way is negative. 

The above point may be clarified by consideration 
of an ideal experiment. Let us accept that an appropriate 
coupler, excited in a certain way, will give rise to a slow 
wave on an electron beam and will, in the process, 
extract energy from the beam; this is one argument used 
by Pierce5 to demonstrate that slow waves carry 
negative energy. Now consider a more complicated 
coupler in which the rf energy extracted from a beam in 
setting up the slow wave is converted to dc and then 
used to accelerate the beam. Such a coupler excites a 
slow wave with the same "small-amplitude" parameters, 
but in this case we should ascribe zero physical power to 
the slow wave since the coupler has neither added 
power to nor removed power from the beam. The 
analysis of Walker,6 which aims at demonstrating the 
equivalence of the small-amplitude power theorem with 
the "physical" power theorem, contains an undeter­
mined constant, the presence of which represents the 
impossibility of determining second-order quantities 
uniquely from first-order quantities. It is commonly 
believed that the negative-energy attribute of slow 
waves is peculiar to systems in which the vibratory 
motion is parallel to the dc velocity. Pierce7 makes this 
assertion but points to what appears to be a counter­
example: the experiment performed by C. C. Cutler, 
C. F. Chapman, and W. E. Mathews8 on coupled 
torsional vibrations of the rims of two bicycle wheels 
rotating at different speeds. The instability of this 
system lends weight to the belief that slow waves in a 
moving medium capable of transverse vibrations again 
has negative energy in some sense, although one can see 
that the physical energy of any such disturbance must 
be positive. 

As we have seen in discussing space-charge waves, we 

5 J. R. Pierce, Bell System Tech. J. 33, 1343-1372 (1954). 
6 L. R. Walker, J. App!. Phys. 26, 1031-1033 (1955). 
7 J. R. Pierce, J. App!. Phys. 25, 179-183 (1954). 
8 W. E. Mathews, Proc. I.R.E. 39, 1044-1051 (1951). 

should not expect the physical energy of slow waves to 
be negative, although this may be so in particular 
propagating systems when the wave is excited in a 
particular way. We should therefore not be deterred 
from looking for a sense in which a slow wave can carry 
negative e~ergy even in a system such as that considered 
in the previous paragraph. Indeed, the fact that one 
would wish to ascribe such an energy to a wave which 
is determined only in linear approximation requires that 
we look for an appropriate generalization of the small­
amplitude power theorem rather than investigate the 
physical power of a class of propagating systems. 

That such a generalization exists has been pointed out 
elsewhere. 3 It is possible to set up a small-amplitude 
energy theorem for any dynamical system, that is, for 
any system which may be described by an action 
principle. The Lagrangian function describing such a 
system may be expanded in a series of homogeneous 
polynomials in the dynamical variables representing 
the disturbance of the system from its quiescent state: 

(1) 

Since the term VOl is independent of the dynamical 
variables, it may be ignored. Since the quiescent state, 
described by setting all dynamical variables equal to 
zero, is a solution of the Euler-Lagrange equations, we 
may ignore VI) also. The lowest-order nonvanishing 
term is therefore V2) which yields the linearized 
equations for the system. The fact that we have found 
a Lagrangian function to describe the "linear" system 
makes it possible to obtain, by standard procedures, 
conservation theorems for this system. It has been 
shown3 that one may assign a complete stress tensor to 
the small-amplitude disturbances of an arbitrary electro­
dynamical system: this leads to the familiar small-

. amplitude power theorem as a special case. We shall 
show that it is this generalization of the small-amplitude 
energy theorem, applicable to any dynamical system, 
which enables us to assert that all slow waves carry 
negative energy. 

II. THE SMALL-AMPLITUDE STRESS TENSOR 

Consider a continuous dynamical system described 
by the action principle 

where the Lagrangian density £ is expressible as 

£=£(4)a, dcp~, ~tP-Y, I, x.), 
dt dXr 

(2) 

(3) 

in terms of the dynamical variables tPa(.rr,l). We write 
xr(r= 1, 2, 3) for the spatial variables and reserve the 
partial differential sign for functional differentiation 
as in (JO£/(Jt. We may now introduce the following 
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variables which are canonically conjugate to rpa 

a£ a£ 
IIa,r= . 

a (dr/!a/dXr) 
(4) 

Then the Euler-Lagrange equations9 deriv~ble from 
(2) are 

dIIa,r dIIa.r a£ 
-+L-=-' (5) 

dt r dXr arpa 

We may now form from the Lagrangian function the 
canonical stress tensorlO which has the following 
components 

drpa 
T tt = L IIa,t-- £, 

a dt 

It is convenient to introduce the following symbols: 

(6) 

E=Ttt , Sr=Ttr, Pr=-Trt ; (7) 

E is the energy density, Sr the energy-flow (or "power") 
vector, Pr the momentum density, and -Tr8 the 
momentum flow tensor. We may verify from (5) that 
the following relations are satisfied 

dE dSr a£ 
-+L-=--, 
dt r dXr at 

(8) 

dPr dTr8 a£ 
-=L-+-. (9) 
dt 8 dx. aXr 

We see from (8) that if the Lagrangian function does 
not depend explicitly on time, energy is conserved; 
similarly, we see from (9) that if the Lagrangian func­
tion does not depend explicitly on any spatial coordi­
nate, the corresponding component of momentum is 
conserved. 

We now wish to consider wave propagation in such 
a continuous dynamical system. We suppose the system 
to be time-independent and uniform in one or more 
spatial coordinates. We may remove other coordinates 
from the problem by an appropriate normal-mode 
analysis. We now consider a wave-like solution of the 

9 H. Goldstein, Classical Mechanics (Afldison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1950), Sec. 11-2. 

10 L. Landau and E. Lifschitz, The Classical Theory of Fields 
(Addison-Wesley Publishing Company Inc., Reading, Massa­
chusetts, 1942), Sec. 4--7. 

equations, for which every dynamical variable is 
expressible as a function of the combination Lr krxr-wt 
of period 271" in this argument. In the particular case 
which is of interest to us (that the Lagrangian function 
is quadratic in its arguments), these periodic functions 
will be circular functions. 

It has been shown elsewherell that, for such a wave 
propagating in such a medium, the mean values of the 
energy density and momentum density are related to a 
quantity 27f1, the "action density," in the following way 

E=Jw, Pr=Jkr. (10) 

The quantity J is obtained by introducing a phase 
angle K into the expression for the wave function, for 
instance by replacing wt by wt+K, and then evaluating 
the expression 

(11) 

The relations (10) involving the wave energy density 
and momentum density, which are identical in form 
with the familiar relations of quantum mechanics be­
tween energy and frequency, momentum, and wave 
vector/2 enable us to establish a sense in which slow 
waves carry negative energy. 

III. SLOW WAVES AND NEGATIVE ENERGY 

In order to obtain an appropriate generalization of the 
idea of "fast" and "slow" waves, we consider a convected 
propagating medium. From now on, we consider only 
one spatial coordinate z. We introduce primed quanti­
ties, such as z', for quantities referred to a frame of 
reference which is convected along with the medium. 
We retain unprimed quantities for measurements with 
respect to a fixed frame, and suppose that the medium 
is moving with velocity v in the z direction. Then the 
time and space coordinates of the two frames are 
related as follows 

t=t', z=z'+vt', (12) 

so that frequencies and wave numbers are related as 
follows 

w=w'+vk', k=k'. (13) 

We now consider the energy and momentum densities 
in the two frames. According to (10), the following 
relations should hold 

E=Jw, P=Jk, \ 

E'=J'w', P'=J'k'.1 
(14) 

The usual rules for transformation of a stress tensor on 

11 P. A. Sturrock, "Field-theory analogs of the Lagrange and 
Poincare invariants," Microwave Laboratory Report M.L. 689 
(Stanford University, Stanford, California, 1960). 

12 L. I. Schiff, Quantum Mechanics (McGraw-Hili Company, 
Inc., New York, 1955), p. 17. 
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going to a moving coordinate system 13 require that 

P=P', E=E'+vP'. (15) 

The relations (15) are indeed compatible with (13) and 
(14), and show that 

1=1'. (16) 

If we denote by u the phase velocity of a wave, so that 

u=w/k, u'=w'/k', (17) 

the second of the relations (15) may be rewritten as 

u 
E=-E'. 

u' 
(18) 

Now consider two waves, with the same wave 
number, which propagate in opposite directions with 
respect to the moving reference frame; then u'>O for 
the "forward" wave and u' <0 for the "backward" 
wave. If v> / u'/, both waves appear to be going forward 
in the fixed frame of reference; one is a "fast wave," 
traveling faster than the convected medium, and the 
other is a "slow wave," which travels slower than the 
medium. It we assume that, when looked at from the 
comoving frame, the medium looks the same for a wave 
traveling to the right as for a wave traveling to the left, 
E' will have the same value for both waves, if they have 
the same amplitude. Hence we see that the energy of 
the fast wave Ej and the energy of the slow wave, E., 
will be given by 

v+u' v-u' 
Ej=--E'. E.= ---E'. (19) 

u' u' 

We see that the fast and slow waves do indeed have 
energies of opposite signs with respect to the fixed 
coordinate system. It will frequently, but not invariably, 
be true that E' gives the correct expression for the 
physical energy density in the frame moving with the 
medium; in this case, E' must be positive. We then see 
from (19) that the fast wave carries positive energy and 
the slow wave carries negative energy. It is interesting to 
note from the second of relation (19) that if the con­
vected velocity is not great enough to convert the back­
ward wave of the moving frame into a forward wave of 
the fixed frame, then the slow wave (which is now a 
backward wave) has positive energy. 

IV. DISCUSSION 

It must be emphasized that the relations (10), which 
make it possible to assign negative energy to slow waves 
in a general way, hold for the energy and momentum of 
a wave as defined by the small-amplitude stress tensor. 
In the case that the exact equations for the system are 
linear, it is not in general true that the canonical stress 
tensor is identical with the physical stress tensor. 
Nevertheless, the mean values of these quantities are 

13 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
1 (McGraw-Hill Company, Inc., New York, 1953), pp. 98-100. 

identicalll under conditions which lead to the action re­
lation (10); moreover, it may happen that certain 
contributions to the canonical stress tensor can be 
directly related to physically significant quantities­
such as Poynting flux. 

We see from (10) that evaluation of the small-ampli­
tude energy and momentum densities is a simpler 
process than evaluation of the corresponding nonlinear 
quantities, since all components may be derived from 
the one quantity 1. Formula (11) for 1 is usually simpler 
to evaluate than corresponding direct expressions for E 
and P r. Indeed, we may write down simple expressions 
for the remaining terms Sr and T r8 of the stress tensor. 
If, as we are here assuming, oJ:,/ot and oJ:,/oxr vanish, 
we may use the properties of group velocityll.14 to es­
tablish from (8) and (9) the following relations 

ow ow 
ST=E-, TTS=-Pr-, 

ok, dk. 
(20) 

Hence, by combining (10) and (20), we may write down 
the following expressions relating the sixteen compo­
nents of the stress tensor to the action density 

E=lw Sr=Jwow/okr, } 

Pr=Jkr , Trs=-lk,dw/dk •. 
(21) 

There are a few further points which should be noted 
concerning the relationship of the small-amplitudell 
stress tensor, the canonical stress tensor and the 
physical stress tensor. In setting up the canonical stress 
tensor for small-amplitude disturbances of electro­
dynamical systems,3 the usual difficulty was found to 
arise, that formulas for components of the tensor were 
gauge-dependent. It was therefore expedient to modify 
the canonical tensor by adding a term which did not 
impair the conservation relations (8) and (9). The neces­
sary transformation is of a typell which does not invali­
date the relation (21). 

The negative energy carried by slow space-charge 
waves explains the operation of traveling-wave tubes5 ; 

it also explains the difficulty of removing noise from the 
slow wave of an electron beam.2 In looking for a 
mechanism for removing this noise, one might direct 
attention to the physical energy represented by the slow 
wave of a beam but this would be inadvisable. The 
problem of removing noise is simply the problem of 
coupling different types of electrodynamic systems, a 
problem which may be discussed by means of the 
linearized equations. Study of the small-amplitude 
energy theorem therefore provides information about 
this coupling problem; study of the physical stress 
tensor, on the other hand, provides information also 
about nonlinear effects of the wave equations and 
coupling mechanisms which are irrelevant to the 
problem of noise removal. 

14 L. Brillouin, Wave Propagation in Periodic Structures (Mc­
Graw-Hill Company, Inc., New York, 1946). 
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It has been noticed15 that the formulas for kinetic 
power of an electron beam can yield the correct expres­
sion for the physical power lost by an electron beam in 
an electron tube, and it is interesting to see when and 
why this is so. Suppose that the beam enters the inter­
action region with power Sb,i and that the input coupler 
introduces an electromagnetic field with power Sf,i; 
suppose also that the beam leaves the interaction region 
with power Sb,f and that the output coupler removes 
field power S f,f. The equation of conservation of energy 
requires that 

(22) 

We first interpret (22) as relating the "physical" 
powers involved. However, we may set up an analogous 
relation between the powers assigned to the beam and 
field by the small-amplitude energy theorem 

(23) 

(If the beam is initially unmodulated, Sb,/=O.) In the 
usual statement of the small-amplitude energy theorem 
for electron tubes,1-3 the expression for the power of an 
electromagnetic field alone gives correctly the physical 
power carried by this field; hence 

(24) 

We note that interaction terms in the expressions for 
energy flow do not appear in our equations since we are 
evaluating the power carried by various components of 
the system outside of the interaction region. We now 
see from (22), (23), and (24) that 

(25) 

which states that the physical power lost by the beam is 
equal to the power loss as evaluated by the small­
amplitude power theorem. We can see that it is generally 
true that if an electrodynamic system interacts with an 
"external" field for a finite length of space or time, the 
small-amplitude formulas give correctly the loss of 
power or energy by this system. 

It is interesting to return to consideration of trans­
verse torsional waves in a moving medium. The analysis 
of Sec. III would lead us to assign negative canonical 
energy to slow waves in such a system. This is com­
patible with results of the experiment of Cutler, 
Chapman, and Mathews. S However, Pierce7 has stated 
that "an analysis shows that when a torsional wave on a 
fixed rod is coupled purely by couples about the axes 
to the slow torsional wave on a parallel rod moving 
axially with the respect to the first, no gaining wave 
results." Pierce resolves the discrepancy between this 
statement and the experiment referred to by pointing 
out that the interaction mechanism in the experiment 
involves longitudinal forces. If, on the other hand, one 
looks for a resolution of this paradox within the frame­
work of the small-amplitude energy theorem, one is led 
to conjecture that the mathematical model considered 

15 M. Chodorow, private communication. 

by Pierce was not a valid model of a dynamical system in 
that the equations were not derivable from a Lagrangian 
function. 

In conclusion, let us consider briefly the theory of 
transverse-field electron tubes. It has been shown16 that 
the motion of a filamentary electron beam in a longi­
tudinal dc magnetic field may be analyzed into four 
waves. One pair of these waves, which Siegman terms 
cyclotron waves, is similar to space-charge waves in 
that one is "fast" and carries positive energy and the 
other is "slow" and carries negative energy. This is as 
we should expect. The other pair is termed "synchronous 
waves" since its phase velocity is equal to the dc beam 
velocity. Of these, it is found that one carries positive 
energy and the other negative energy, but it is not 
immediately obvious from our theory why this should 
be so. 

The synchronous waves have the form of right-hand 
and left-hand helices convected with the beam velocity. 
Hence, in the comoving frame, these waves have zero 
frequency and hence zero canonical energy. Evaluation 
of energy in the laboratory coordinate system therefore 
turns upon evaluation of the momentum of the two 
waves, which will be the same in the laboratory system 
and in the comoving coordinate system. However, the 
presence of the magnetic field makes the medium 
anisotropic so that we cannot assert that the action 
densities of the two waves in the comoving frame should 
be equal if their amplitudes are equal. This anisotropy 
may be removed by going to the Larmor frame,J7 which 
rotates with half the cyclotron frequency. Hence the 
two waves, which were of the form 

x+iy= re±ik(z-vt) (26) 

in the original coordinate system, have the form 

X' +iy' =e-iwLt'±ikz', (27) 

in the comoving Larmor frame if the appropriate trans­
formation is written as 

x+iy= (x'+iy')eiwLt, z=z'+vt', t=t'. (28) 

If the field is so directed that WL is positive, the waves 
characterized by plus and minus signs may be termed 
"antirotating" and "corotating." We expect both waves 
to have energy of the same sign in the Larmor frame so 
that the action densities which we should assign to both 
waves have the same sign. The momentum in the co­
moving Larmor frame is ±Jk; this is the same in the 
comoving nonrotating frame and in the stationary 
frame. Hence, from (26), the energy densities of the 
two waves in the stationary frame are ±Jvk. If, as we 
should expect, 1>0, we see that the antirotating wave 
has positive energy and the corotating waveihas 
negative energy. This is in agreement with Siegman's 
analysis. 

16 A. E. Siegman, J. AppJ. Phys. 31, 17-26 (1960). 
17 H. Goldstein, Classical Mechanics (McGraw-Hill C9mpany, 

Inc., New.York, 1950), section 5-8. 
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